Optoelectronics

Tool measures polarisation of light

24th June 2016
Enaie Azambuja
0

Researchers from North Carolina State University have developed a tool for detecting and measuring the polarisation of light based on a single spatial sampling of the light, rather than the multiple samples required by previous technologies. The device makes use of the unique properties of organic polymers, rather than traditional silicon, for polarisation detection and measurement.

Light consists of an electric field. That electric field oscillates, and the direction in which that field oscillates is the light's polarisation. If the field oscillates randomly, it's referred to as unpolarised light. The polarisation of light can be affected in predictable ways when light bounces off, or is scattered by, physical objects.

"We want to detect and measure polarisation, because it can be used for a wide variety of applications," says Michael Kudenov, an assistant professor of electrical and computer engineering at NC State and lead investigator on this research.

"For example, polarisation detectors can be used to pick out man-made materials against natural surfaces, which has defense and security applications. They could also be used for atmospheric monitoring, measuring polarisation to track the size and distribution of particles in the atmosphere, which is useful for both air quality and atmospheric research applications."

The new device incorporates three polarisation detectors made of organic polymer conductors. Each of the detectors is sensitive to a specific orientation of the polarisation. As light enters the device, the first detector measures one orientation of the polarisation, and the remainder of the light passes through.

This is repeated with the subsequent detectors, effectively allowing each detector to take a partial polarisation measurement of the same beam of light. The measurements from all three detectors are fed into a model that calculates the overall polarisation of the light.

"Most types of polarised light, particularly in natural environments, have a large linear polarisation signature," Kudenov says. "And three measurements are sufficient for us to calculate the state of linear polarisation in a light sample."

Previous technologies rely on multiple light samples, either taken at different times or at the same time but from different points in space, which can influence the accuracy of results.

The researchers have tested the new device using a laser to provide initial proof-of-concept data. Early tests show that the device can achieve measurement error as low as 1.2%.

Product Spotlight

Upcoming Events

View all events
Newsletter
Latest global electronics news
© Copyright 2024 Electronic Specifier