'Nanoantennae' can manipulate light beams

10th March 2016
Source: A*STAR
Posted By : Enaie Azambuja
'Nanoantennae' can manipulate light beams

Researchers in Singapore are using 'nanoantennae' to manipulate light beams. This may open the door to the development of new light-based technologies, such as display screens, and in energy harvesting and data transmission. It would allow, for example, the miniaturisation of traditional optical components, such as lenses, polarizers or beam-splitters, to nanoscale sizes.

At the same time, it could dramatically increase their performance and resolution.

A novel approach to control the propagation of light at the nanoscale involves the use of so-called metasurfaces. A metasurface is a two-dimensional arrangement of nanosized particles called nanoantennae. Their geometries and material properties are cleverly designed to interact with light in a determined way.

By engineering such metasurfaces, it is possible to modify the overall path of the light and, for example, make it bend or focus at a certain point of space, similar to what conventional prisms or lenses do. In the case of metasurfaces, this happens at distances that are 1,000 times smaller than the diameter of a human hair.

Researchers at the Agency for Science, Technology and Research (A*STAR) in Singapore have demonstrated that using silicon nanoparticles as nanoantennae, in place of metals used in previous research, allows full control of an incoming light beam while keeping it essentially transparent, allowing transmission rates above 85%.

By controlling the spatial distribution of the silicon nanoparticles, they were able to bend a light beam with record efficiencies of about 50%: a level that could be further increased by optimising the system.

When metals were used to design nanoantennae, they caused strong reflections of light making them unsuitable for devices that transmit data. Heating induced in the metals also resulted in additional losses in the device, a serious drawback for real-world applications that require high efficiency.

Silicon, as a semiconducting material, overcomes these issues, the A*STAR researchers found.

While the team's future research will focus on creating switchable or reconfigurable devices, together with new materials in different spectral regions, the technological challenge will be to develop fully viable ultra-flat optical devices for commercial uses.


You must be logged in to comment

Write a comment

No comments




Sign up to view our publications

Sign up

Sign up to view our downloads

Sign up

Startups Magazine Launch Party: Financing a Startup
24th July 2018
United Kingdom WeWork Waterhouse Square, London
European Microwave Week 2018
23rd September 2018
Spain Ifema Feria De Madrid
IoT Solutions World Congress 2018
16th October 2018
Spain Barcelona
Engineering Design Show 2018
17th October 2018
United Kingdom Ricoh Arena, Coventry
Maintec 2018
6th November 2018
United Kingdom NEC, Birmingham